ResearchAcademia Books and Journals Business and Economics Constants, Identities, and Variations Databases and Archives Dictionaries Encyclopedias History Learning Analysis of a Complex Kind Imaginary Numbers Are Real – Welsh Labs Matrix Methods in Data Analysis, Signal Processing, and Machine Learning MIT A 2020 Vision of Linear Algebra, Spring 2020 Orrery Test Test – Electric Strings Test – Spaceworm Mathematics Heurist on Desmos Heurist on Geogebra Heurist on Overleaf Heurist on Wolfram Riemann Surfaces The Riemann-Hurwitz Formula for Regular Graphs Other Niches Personalities Reference Research Cyclopedia Universalis Products, Services, and Technologies Syndications of Interest Science Search Social Science Technology Blogs Blogs – Philosophy Neural Networks Demystified – Welsh Labs Wikidata Matrix Methods in Data Analysis, Signal Processing, and Machine Learning A) Course Introduction of 18.065 by Professor Strang B) An Interview with Gilbert Strang on Teaching Matrix Methods in Data Analysis, Signal Processing,... 01. The Column Space of A Contains All Vectors Ax 02. Multiplying and Factoring Matrices 03. Orthonormal Columns in Q Give Q'Q 04. Eigenvalues and Eigenvectors 05. Positive Definite and Semidefinite Matrices 06. Singular Value Decomposition (SVD) 07. The Closest Rank k Matrix to A 08. Norms of Vectors and Matrices 09. Four Ways to Solve Least Squares Problems 10. Survey of Difficulties with Ax 11. Minimizing _x_ Subject to Ax 12. Computing Eigenvalues and Singular Values 13. Randomized Matrix Multiplication 14. Low Rank Changes in A and Its Inverse 15. Matrices A(t) Depending on t, Derivative 16. Derivatives of Inverse and Singular Values 17. Rapidly Decreasing Singular Values 18. Counting Parameters in SVD, LU, QR, Saddle Points 19. Saddle Points Continued, Maxmin Principle 20. Definitions and Inequalities 21. Minimizing a Function Step by Step 22. Downhill to a Minimum 23. Accelerating Gradient Descent (Use Momentum) 24. Linear Programming and Two-Person Games 25. Stochastic Gradient Descent 26. Structure of Neural Nets for Deep Learning 27. Find Partial Derivatives 30. Completing a Rank-One Matrix, Circulants! 31. Fourier Matrix 32. ImageNet is a Convolutional Neural Network (CNN), The Convolution Rule 33. Neural Nets and the Learning Function 34. Distance Matrices, Procrustes Problem 35. Finding Clusters in Graphs 36. Alan Edelman and Julia Language https://youtu.be/Cx5Z-OslNWE https://youtu.be/t36jZG07MYc https://youtu.be/YiqIkSHSmyc https://youtu.be/or6C4yBk_SY https://youtu.be/Xa2jPbURTjQ https://youtu.be/k095NdrHxY4 https://youtu.be/xsP-S7yKaRA https://youtu.be/rYz83XPxiZo https://youtu.be/Y4f7K9XF04k https://youtu.be/NcPUI7aPFhA https://youtu.be/ZUU57Q3CFOU https://youtu.be/Z_5uLqcwDgM https://youtu.be/MuEW9pG9oxE https://youtu.be/d32WV1rKoVk https://youtu.be/z0ykhV15wLw https://youtu.be/XhSk_Lw2X_U https://youtu.be/z3SmljnD_nQ https://youtu.be/AdTvkFsqcDc https://youtu.be/9BYsNpTCZGg https://youtu.be/xaSL8yFgqig https://youtu.be/2K7CvGnebO0 https://youtu.be/nrDkb2MAwSA https://youtu.be/nvXRJIBOREc https://youtu.be/AeRwohPuUHQ https://youtu.be/wrEcHhoJxjM https://youtu.be/feb9j65Iz4w https://youtu.be/k3AiUhwHQ28 https://youtu.be/sx00s7nYmRM https://youtu.be/lZrIPRnoGQQ https://youtu.be/p-bXJIa7QVI https://youtu.be/1pFv7e9xtHo https://youtu.be/hwDRfkPSXng https://youtu.be/L3-WFKCW-tY https://youtu.be/0Qws8BuK3RQ https://youtu.be/cxTmmasBiC8 https://youtu.be/rZS2LGiurKY MIT A 2020 Vision of Linear Algebra, Spring 2020