The book uses classical problems to motivate a historical development of the integration theories of Riemann, Lebesgue, Henstock-Kurzweil and McShane, showing how new theories of integration were developed to solve problems that earlier integration theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and could be used separately in teaching a portion of an introductory real analysis course. There is a sufficient supply of exercises to make this book useful as a textbook.
From the Back Cover
The book uses classical problems to motivate a historical development of the integration theories of Riemann, Lebesgue, Henstock Kurzweil and McShane, showing how new theories of integration were developed to solve problems that earlier integration theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and could be used separately in teaching a portion of an introductory real analysis course. There is a sufficient supply of exercises to make this book useful as a textbook.
Description:
The book uses classical problems to motivate a historical development of the integration theories of Riemann, Lebesgue, Henstock-Kurzweil and McShane, showing how new theories of integration were developed to solve problems that earlier integration theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and could be used separately in teaching a portion of an introductory real analysis course. There is a sufficient supply of exercises to make this book useful as a textbook.
From the Back Cover
The book uses classical problems to motivate a historical development of the integration theories of Riemann, Lebesgue, Henstock Kurzweil and McShane, showing how new theories of integration were developed to solve problems that earlier integration theories could not handle. It develops the basic properties of each integral in detail and provides comparisons of the different integrals. The chapters covering each integral are essentially independent and could be used separately in teaching a portion of an introductory real analysis course. There is a sufficient supply of exercises to make this book useful as a textbook.