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We consider the generalization of linear fractional transformations of the plane to C
n. Analogs of the one-

variable theory are developed including fixed point sets and points of symmetry. The domains in C
n that

are images of the ball under these transformations are found. Finally, we see some examples where classical
fixed point results follow from this theory in a natural way.
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1. INTRODUCTION

The group of linear fractional transformations of the complex plane,

TðzÞ ¼
azþ b

czþ d
, ad � bc 6¼ 0,

is a useful tool in the theory of functions of one complex variable. In this article, we will
see that the natural generalizations of these functions have similarly useful properties in
the setting of several complex variables.
We will work in complex Euclidean space C

n, consisting of vectors of the form
z ¼ ðz1, . . . , znÞ and equipped with the standard Hermitian inner product hz,wi ¼Pn

k¼1 zkwk and associated norm kzk ¼ hz, zi1=2 for z,w 2 C
n. When used in computation

with matrices, z 2 C
n will always be treated as a column vector. Let B ¼ Bn ¼ fz 2 C

n:
kzk < 1g denote the open unit ball, and set e1, . . . , en to be the standard basis vectors. If
z 2 C

k and w 2 C
n�k with k ¼ 1, . . . , n� 1, write ðz,wÞ for the vector in C

n whose first k
components are z and remaining n� k components are w. Note that the word ‘‘dimen-
sion’’ will always mean as a complex space.
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Let LðCn
Þ denote the algebra of linear operators (realized as n n matrices) from C

n

into C
n with identity I, and GLðn,CÞ and SLðn,CÞ be the general linear and special

linear groups, respectively. That is, A 2 GLðn,CÞ provided that detA 6¼ 0, and
A 2 SLðn,CÞ if detA ¼ 1. For any complex matrix A, the adjoint (conjugate-transpose)
is given by A�. Set UðnÞ � LðCn

Þ to be the group of unitary operators. In other words
U 2 UðnÞ if and only if U� ¼ U�1.
Complex projective n-space CP

n is the complex manifold realized as the set of all
complex lines in C

nþ1. Formally, CP
n
¼ ðC

nþ1
nf0gÞ=�, the set of all equivalence classes

under the equivalence relation �, defined for z,w 2 C
nþ1

nf0g by z � w if and only if
z ¼ �w for some � 2 Cnf0g. Denote the equivalence class under � of a given
z 2 C

nþ1
nf0g by ½z� ¼ ½z1 : � � � : znþ1�. We consider C

n
� CP

n by the embedding
z� ½z : 1� (with the obvious simplification in notation).
The group AutB of biholomorphic automorphisms of B are well-known examples of

the functions we will study. Recall that T 2 AutB if and only if T ¼ U � ’ru, where
U 2 UðnÞ and ’ru : B! B is the involution given by

’ruðzÞ ¼
ru� Puz� srQuz

1� rhz, ui
, z 2 B, ð1:1Þ

with r 2 ½0, 1Þ, u 2 @B, sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
, and projections Pu ¼ h�, uiu and Qu ¼ I � Pu.

Another example of these functions is the Cayley transform

TðzÞ ¼
e1 þ z

1� z1
, ð1:2Þ

which maps B onto the Siegel generalized right half-space

H ¼ z 2 C
n: Re z1 >

Xn
k¼2

jzkj
2

( )
: ð1:3Þ

These functions are thoroughly discussed in [6].
After defining the group of generalized linear fractional transformations in C

n, we
will see that these functions extend naturally to homeomorphisms of CP

n. The study
of fixed points leads to an understanding of how many points (and of what type)
will uniquely determine a transformation. We find the orbit of the ball B under the
action of the transformation group and see how the concept of symmetric points can
be used to map one of these domains to another. We will conclude by showing how
an approach using linear fractional transformations in C

n provides results concerning
fixed boundary points of automorphisms of B and H and the convergence of iterates
of these maps to the boundary. This approach mimics the familiar proofs of the analo-
gous results in the one-variable case.

2. LINEAR FRACTIONAL TRANSFORMATIONS IN C
n

We begin by considering linear fractional functions of the form

TðzÞ ¼
Azþ a

�þ hz, bi
, ð2:1Þ
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where A 2 LðCn
Þ, a, b 2 C

n, and � 2 C, defined for all z 2 C
n such that hz, bi 6¼ ��.

Note that T is simply the ratio of an affine mapping with an affine functional. If we
take another such function

SðzÞ ¼
Bzþ c

	þ hz, di
,

then we see that the composition

T � SðzÞ ¼
ðABþ ad�Þzþ ðAcþ 	aÞ

ð�	þ hc, biÞ þ hz,B�bþ �di

is another function of the same type, taking into consideration obvious domain
constraints.
Associate to T and S the operators in LðCnþ1

Þ given in block matrix form by

~TT ¼
A a
b� �

� �
, ~SS ¼

B c
d� 	

� �
: ð2:2Þ

A simple calculation reveals that the product ~TT ~SS corresponds to T � S in a similar way.
Since any operator in LðCnþ1

Þ corresponds to a linear fractional function in the sense of
(2.1) and (2.2), a linear fractional function will have an inverse if and only if its associ-
ated operator in LðCnþ1

Þ is invertible, and its inverse is another linear fractional func-
tion. We now have the following definition.

Definition 2.1 A function of the form (2.1) is called a linear fractional transformation
of C

n provided that the associated operator given in (2.2) lies in GLðnþ 1,CÞ. Denote
the set of all linear fractional transformations by LðC

n
Þ.

With the obvious domain constraints aside, LðCn
Þ is a group, under composition, of

holomorphic functions. It is known [6] that such functions will map affine sets onto
affine sets. Note that it is not necessary that the operator A in (2.1) be invertible in
order for T to lie in LðC

n
Þ.

If T 2 LðC
n
Þ, there is not a unique ~TT associated to T in the sense of (2.2). For if

� 2 Cnf0g, then � ~TT will associate to T if ~TT does. This exposes the group structure of
LðC

n
Þ.

THEOREM 2.2 The groups LðC
n
Þ and SLðnþ 1,CÞ=Z are isomorphic, where

Z ¼ fe2k
i=ðnþ1ÞI : k ¼ 0, . . . , ng is the center of SLðnþ 1,CÞ.

As a result, we will always assume that ~TT 2 SLðnþ 1,CÞ.
Linear fractional transformations of the complex plane extend to homeomorphisms

of the extended complex plane C1. Projective space CP
n is the natural compactification

of C
n for our purposes, as indicated by the following theorem. (Of course, CP

1 is
homeomorphic to the sphere S2, and thus to C1.)

THEOREM 2.3 If ~TT 2 SLðnþ 1,CÞ, then the function T : CP
n
! CP

n given by

Tð½z�Þ ¼ ½ ~TTz�, z 2 C
nþ1

nf0g

is a homeomorphism, and T jCn is the member of LðCn
Þ that corresponds to ~TT .
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Proof It is easy to see that T is well-defined by observing that the sets ~TTð½z�Þ and ½ ~TTz�
are equal for all z 2 C

nþ1
nf0g. Clearly, T is a homeomorphism. If ~TT is written as in (2.2),

then

Tð½z : 1�Þ ¼ ½ ~TTðz, 1Þ� ¼
Azþ a

�þ hz, bi
: 1

� �

for all z 2 C
n such that hz, bi 6¼ ��. J

If T 2 LðC
n
Þ has the form (2.1) and z 2 C

n is such that hz, bi ¼ ��, then TðzÞ can be
realized as a point of CP

n
nC

n. For this reason, we define the set

1 ¼ CP
n
nC

n:

Either T maps an ðn� 1Þ-dimensional affine subset of Cn into1 or T is an affine trans-
formation of Cn. Furthermore, if n � 2, then one point of1 must map into1 because
1 is compact (it is homeomorphic to CP

n�1) and Tð1Þ \ C
n is an ðn� 1Þ-dimensional

affine set.

3. FIXED POINT SETS

In the plane, a linear fractional transformation is uniquely determined by its action on
three points of C. We will see that, with some restrictions, a similar result holds in C

n.
We begin with a lemma.

LEMMA 3.1 If T 2 LðC
n
Þ fixes the points ½ek : 1� for k ¼ 1, . . . , n, ½0 : � � � : 0 : 1�, and

½1 : � � � : 1 : 0� in CP
n, then T is the identity.

Proof If ~TT 2 SLðnþ 1,CÞ corresponds to T, then ðek, 1Þ, k ¼ 1, . . . , n, ð0, . . . , 0, 1Þ, and
ð1, . . . , 1, 0Þ are eigenvectors of ~TT , hence ~TT is a multiple of I. g

THEOREM 3.2 Let X ¼ fz1, . . . , znþ2g and Y ¼ fw1, . . . ,wnþ2g be sets of nonzero vectors
in C

nþ1, and suppose that Xnfzkg is linearly independent for any k ¼ 1, . . . , nþ 2. There
exists T 2 LðC

n
Þ such that

Tð½zk�Þ ¼ ½wk�, k ¼ 1, . . . , nþ 2, ð3:1Þ

in CP
n if and only if Ynfwkg is linearly independent for each k ¼ 1, . . . , nþ 2.

Proof Without loss of generality, suppose that zk ¼ ðek, 1Þ for k ¼ 1, . . . , n,
znþ1 ¼ ð0, . . . , 0, 1Þ, and znþ2 ¼ ð1, . . . , 1, 0Þ. If Ynfwkg is linearly independent for all
k, then the (block) matrix

W ¼ ½w1 � � � wnþ1�

is invertible. If some coordinate, say the kth, ofW�1wnþ2 equals 0, then wnþ2 is a linear
combination of fw1, . . . ,wnþ1gnfwkg, which is impossible. Thus there exist
�1, . . . , �nþ2 2 Cnf0g such that

W�1wnþ2 ¼ ��1nþ2ð�e, � n�nþ1Þ,
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where e ¼ ð1, . . . , 1Þ and � ¼ diag ð�1, . . . , �nÞ. Define

~TT ¼W
� 0

��nþ1e
T �nþ1

� �
: ð3:2Þ

Then

~TT
I 0
eT 1

� �
¼W

� 0
0T �nþ1

� �
: ð3:3Þ

It follows from (3.2) and (3.3) that the transformation T 2 LðC
n
Þ corresponding to ~TT

satisfies (3.1).
If S 2 LðC

n
Þ also satisfies (3.1), then T � S�1 fixes ½ek : 1� for k ¼ 1, . . . , n,

½0 : � � � : 0 : 1�, and ½1 : � � � : 1 : 0�. Hence T ¼ S by Lemma 3.1.
The converse follows by simply reversing the above argument. g

We conclude the section with the following theorem which gives a description of
the fixed point set in C

n of some T 2 LðC
n
Þ. (We use the notation FixT ¼

fz 2 C
n: TðzÞ ¼ zg.)

THEOREM 3.3 Let T 2 LðC
n
Þ. If FixT 6¼ 6 0, then there is a positive integer m � nþ 1

such that

FixT ¼
[m
k¼1

Ek, ð3:4Þ

where E1, . . . ,Em � C
n are pairwise disjoint affine sets that satisfy

Xm
k¼1

dimEk � n�mþ 1:

Proof Let ~TT 2 SLðnþ 1,CÞ correspond to T. If z 2 FixT , then ðz, 1Þ is an eigenvector
of ~TT . We will thus consider the eigenvalues of ~TT .
Set �ð ~TTÞ � Cnf0g to be the set of eigenvalues of ~TT . For each � 2 �ð ~TTÞ, let ~EE� � C

nþ1

be the eigenspace of �. Let � be the set of all � 2 �ð ~TTÞ for which ~EE� contains vectors
with nonzero ðnþ 1Þth coordinate. (If � 2 �ð ~TTÞn�, then ~EE� will correspond to fixed
points in 1.) It is easy to see that if z 2 C

n is such that ðz, 1Þ 2 ~EE� for some � 2 �,
then z 2 FixT .
If dim ~EE� ¼ 1 for some � 2 �, then ~EE� corresponds to a fixed point of T in C

n.
Otherwise, suppose that ðz, 1Þ, ðw, 1Þ 2 ~EE� for some � 2 � and z,w 2 C

n with z 6¼ w.
Then �ðz, 1Þ þ ðw, 1Þ 2 ~EE� for all �,  2 C. But if � 6¼ �, then

½�ðz, 1Þ þ ðw, 1Þ� ¼
�zþ w

�þ 
: 1

� �

shows that the affine combination ð�zþ wÞ=ð�þ Þ 2 FixT . It follows that for any
� 2 �, a basis of the form fðz1, 1Þ, . . . , ðzk, 1Þg (with z1, . . . , zk 2 C

n) can be chosen for
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~EE�, and if E� is the set of all affine combinations of z1, . . . , zk, then E� � FixT .
Now distinct members of � correspond to disjoint affine sets. Furthermore,X

�2�

dimE� þ card� ¼
X
�2�

dim ~EE� � nþ 1:

Letting m ¼ card� gives the result. g

4. THE IMAGES OF THE UNIT BALL UNDER TRANSFORMATIONS IN LðC
n
Þ

In the complex plane, a linear fractional transformation can be found that will map the
open unit disk onto any given interior of a circle, exterior of a circle, or halfplane. Our
desire for analogous properties in C

n motivates us to compute the orbit of B under the
action of LðCn

Þ. In other words, what domains in C
n are the (finite) images of B under

transformations in LðCn
Þ ? The answer to this question involves the sets H (see (1.3)) and

� ¼ z 2 C
n: jz1j

2 > 1þ
Xn
k¼2

jzkj
2

( )
: ð4:1Þ

If n ¼ 1, then � is the exterior of the unit disk. The following theorem gives properties
of � for general n.

THEOREM 4.1 Let T 2 LðC
n
Þ be given by

TðzÞ ¼
zþ ð1� z1Þe1

z1
: ð4:2Þ

Then T is a generalization of the inversion in C and interchanges the sets fz 2 B: z1 6¼ 0g
and � while mapping fz 2 C

n: z1 ¼ 0g into 1.

Proof All that needs verification is the claim concerning the interchange of
fz 2 B:z1 6¼ 0g and �. Clearly, the operator ~TT 2 Uðnþ 1Þ that permutes the first and
last coordinates of vectors in C

nþ1 corresponds to T, and hence T is its own inverse.
We thus calculate those z 2 C

n for which TðzÞ 2 B.
Observe that

kzþ ð1� z1Þe1k
2 ¼ kzk2 þ 2Re ½ð1� z1Þz1� þ j1� z1j

2 ¼ kzk2 � jz1j
2 þ 1:

Therefore kTðzÞk < 1 if and only if kzk2 þ 1 < 2jz1j
2. Subtracting jz1j

2 gives

jz1j
2 > 1þ

Xn
k¼2

jzkj
2,

as desired. g

As previously mentioned, our goal is to describe the set

A ¼ fTðBÞ \ C
n: T 2 LðC

n
Þg ð4:3Þ

The following theorem does this in terms of B, H, and �.
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THEOREM 4.2 The set A can be decomposed into disjoint sets as follows:

A ¼ AB [ AH [ A�, ð4:4Þ

where AU is the collection of full rank affine images of U for U ¼ B,H,�.

Proof Clearly, AB, AH , and A� are disjoint subsets of A, since they contain
exclusively bounded domains, unbounded simply connected domains, and domains
that are not simply connected, respectively.
Suppose that U 2 A is bounded. Then U ¼ TðBÞ for some T 2 LðC

n
Þ where

Tð0Þ =21. Therefore, T may be written as in (2.1) with � ¼ 1. Since Tð�b=kbk2Þ 2 1,
the boundedness of U forces kbk < 1. If b ¼ 0, then T is a full rank affine mapping.
Otherwise, let ’ 2 AutB be such that ’ð�bÞ ¼ 0. Then ’ and T map the same
ðn� 1Þ-dimensional affine set into 1. As a result, the function F ¼ T � ’�1 2 LðC

n
Þ

maps 1 into 1. Thus F is a full rank affine mapping and FðBÞ ¼ U.
If U ¼ TðBÞ for some T 2 LðC

n
Þ such that TðuÞ 2 1 for exactly one u 2 @B, then let

L 2 UðnÞ be such that Le1 ¼ u. Clearly, T � L takes fz 2 C
n: z1 ¼ 1g into 1. Let S be

given as in (1.2). Then F ¼ T � L � S�1 belongs to LðC
n
Þ and takes 1 into 1. Thus

F is a full rank affine mapping that takes B onto U.
Lastly, it remains to consider U ¼ TðBÞ \C

n, where T 2 LðC
n
Þ sends the ðn� 1Þ-

dimensional affine set E � C
n into 1 and E \ B 6¼ 6 0. Let a 2 E \ B and choose

’ 2 AutB such that ’ðaÞ ¼ 0. Now ’ðEÞ is an ðn� 1Þ-dimensional subspace of C
n.

Let L 2 UðnÞ satisfy Lð’ðEÞÞ ¼ fz 2 C
n: z1 ¼ 0g. Then T � ’�1 � L�1 takes the subspace

fz 2 C
n: z1 ¼ 0g into 1. If S is as given in (4.2), then F ¼ T � ’�1 � L�1 � S�1 is a

member of LðCn
Þ taking 1 into 1. Therefore U is the full rank affine image, under

F, of �. J

The image of the unit circle under a linear fractional transformation of one complex
variable is always a circle on the Riemann sphere C1. It does not appear that there is an
appropriate metric on CP

n for which the image of the unit sphere in C
n is always a

‘‘sphere’’ in CP
n. The natural generalization of the spherical metric to CP

n is the
Fubini-Study metric (see [7]). If one calculates the image of the unit sphere of C

n

under the transformations given by (1.2) and (4.2), the distance from the ‘‘center’’ of
the image in CP

n under this metric varies with jz1j.

5. SYMMETRIC POINTS

With linear fractional transformations of the plane, symmetric points provide a simple
method to determine a transformation between domains in A. We desire an analog in
higher dimensions. The following lemma and corollary provide a useful start.

LEMMA 5.1 Let T 2 LðC
n
Þ, and let L � C

n be a complex line such that TðLÞ 6� 1.
Then TðLÞ is a complex line and T maps circles and lines in L onto circles and lines
in TðLÞ.

Proof The preservation of affine sets under linear fractional transformations verifies
that TðLÞ is a complex line. Without loss of generality, suppose that L ¼ f�e1:
� 2 Cg, and that w0 ¼ Tð0Þ and w1 ¼ Tðe1Þ are finite. Define ’ : C ! C1 implicitly
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by the equation

Tð�e1Þ ¼ ð1� ’ð�ÞÞw0 þ ’ð�Þw1: ð5:1Þ

The result will follow due to a one-variable argument provided that ’ 2 LðCÞ.
If we assume T has the form (2.1), then (5.1) becomes

�A1 þ a

�þ �b1
¼ ð1� ’ð�ÞÞ

a

�
þ ’ð�Þ

A1 þ a

�þ b1
,

where A1 is the first column of A. Direct calculation then shows that

’ð�Þ ¼
ð�þ b1Þ�

�þ b1�
,

as desired. J

COROLLARY 5.2 If U 2 A and L is a complex line in C
n intersecting U, then L \ @U is a

circle or a line.

We combine this with our notion of symmetric points in the plane to develop a
definition for C

n in a natural way.

Definition 5.3 Let U 2 A, and fix z0 2 U. A point z 2 C
n is symmetric to z0 with

respect to @U provided that z is symmetric to z0, in the one-variable sense, with respect
to the circle or line L \ @U, where L is the complex line through z and z0. Denote the set
of all z 2 C

n symmetric to z0 with respect to @U by �ðz0; @UÞ.

The set of symmetric points has the following structure.

THEOREM 5.4 Let U 2 A and z0 2 U. The set �ðz0; @UÞ is either empty or an ðn� 1Þ-
dimensional affine set in C

n.

It should be noted that symmetric points in 1 are not being considered. Clearly, if
�ðz0; @UÞ ¼ 6 0, then there are symmetric points in 1. Of course, even when
�ðz0; @UÞ 6¼ 6 0, the set �ðz0; @UÞ \1 in CP

n contains symmetric points (provided
that n � 2). However, the abundance of symmetric points makes considering infinite
symmetric points unnecessary in this case.

Proof of Theorem 5.4 Since linear fractional transformations send affine sets to affine
sets and preserve symmetric points, it suffices to assume U ¼ B. Obviously,
�ð0; @BÞ ¼ 6 0 by definition, and thus suppose z0 6¼ 0. By rotation by a unitary operator,
assume z0 ¼ re1 for some r 2 ð0, 1Þ.

For each u 2 @B, define Lu ¼ fz0 þ �u: � 2 Cg. To determine the point symmetric to
z0 in Lu \ @B, we must find the circle in C given by C ¼ f� 2 C: kz0 þ �uk ¼ 1g. First
note that

kz0 þ �uk2 ¼ r2 þ 2rRe �u1 þ j�j2 ¼ j�þ ru1j
2 þ r2ð1� ju1j

2Þ:
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It follows that

C ¼ �ru1 þ ei�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2ðju1j

2 � 1Þ

q
: 0 � � � 2



 �
:

If �0 2 C is symmetric to 0 with respect to C, then �0 lies in the direction of u1 from the
center of C and obeys the distance equation

j�þ ru1j ¼
1þ r2ðju1j

2 � 1Þ

rju1j
:

Therefore

�0 ¼ �ru1 þ
u1
ju1j

�
1þ r2ðju1j

2 � 1Þ

rju1j
¼
1� r2

ru1
:

It follows that z0 þ �0u is symmetric to z0 with respect to the circle Lu \ @B.
We have found that

�ðz0; @BÞ ¼ z0 þ
1� r2

ru1

� 
u: u 2 @B


 �
,

where u1 ¼ 0 will give symmetric points in1. Replacing u 2 @B with �u, where j�j ¼ 1,
yields the same symmetric point, and therefore assume that u1 > 0. Now
fu 2 @B: u1 � 0g is homeomorphic to the closed unit ball Bn�1 of C

n�1 due to the
mapping

Bn�1 3 ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�k2

q
, �

� 
2 @B:

Therefore

�ðz0; @BÞ ¼ z0 þ
1� r2

r
1,

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�k2

p
 !

: � 2 Bn�1

( )
,

which is an ðn� 1Þ-dimensional affine set. g

With the help of Theorem 3.2, we use Theorem 5.4 to find a transformation in LðCn
Þ

mapping U onto V for given U,V 2 A. Select z1 2 U such that �ðz1; @UÞ 6¼ 6 0. The
affine set �ðz1; @UÞ is then determined by vectors z2, . . . , znþ1. Choose znþ2 2 @U that
does not lie on the complex lines through z1 and zk, k ¼ 2, . . . , nþ 1. If
w1, . . . ,wnþ2 2 C

n are chosen in a similar way with respect to V, then the transformation
T 2 LðC

n
Þ given in Theorem 3.2 will map U onto V. Moreover, T is unique with respect

to the image of the points z1, . . . , znþ2.
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6. APPLICATIONS

We now show how the methods of previous sections can be applied to some mapping
problems. Some of these results are developed in [1,2,4–6,9] from a different point of
view. The reader should notice that the application of linear fractional transformations
gives proofs of these results that are reminiscent of the proofs in the one-variable case,
some of which are found in [8].
We begin with an analysis of automorphisms of the Siegel right half-space H given in

(1.3). We will find it convenient to write z ¼ ðz1, ẑzÞ, where ẑz 2 C
n�1, for a vector z 2 C

n.
Given an operator A, Ak will denote the vector in the kth column of A (as a matrix).
The following theorem gives the transformations in AutH that fix 0.

THEOREM 6.1 Let T 2 LðC
n
Þ. Then T 2 AutH and Tð0Þ ¼ 0 if and only if there exist

c > 0, b 2 C
n with Re b1 ¼ kb̂bk2=4, and U 2 Uðn� 1Þ such that T has the form (2.1)

with a ¼ 0, � ¼ 1, and

A ¼
c2 0T

cUb̂b=2 cU

� �
: ð6:1Þ

Proof Assuming that Tð0Þ ¼ 0 and TðHÞ ¼ H, we know that T may be written in the
form (2.1) with a ¼ 0 and � ¼ 1 and that

Re ð1þ hb, ziÞ
Xn
k¼1

A1kzk

 !
�

Xn
k¼1

zkÂAk

�����
�����
2

� 0 ð6:2Þ

whenever

Re z1 � kẑzk2 � 0, ð6:3Þ

with equality in (6.2) and (6.3) occurring simultaneously. Vectors z 2 C
n causing

equality in (6.3) depend upon ẑz and t in the sense that

z ¼ ðkẑzk2 þ it, ẑzÞ, ẑz 2 C
n�1, t 2 R: ð6:4Þ

Equality in (6.2) then holds for z as in (6.4). The only terms in (6.2) that are linear in ẑz
are

Pn
k¼2 A1kzk, and therefore A1k ¼ 0 for k ¼ 2, . . . , n. The only term in (6.2) that is

linear in t and contains no other variables is ReA11it, and therefore A11 2 Rnf0g. Set
c2 ¼ A11, and write

A ¼
c2 0T

ÂA1 ÂA

" #
:

With z1 as in (6.4), (6.2) becomes

c2ðkẑzk2 þ jz1j
2 Re b1 þRe ðz1hb̂b, ẑziÞÞ ¼ jz1j

2kÂA1k
2 þ 2Re ðz1hÂA1, ÂAẑziÞ þ kÂAẑzk2: ð6:5Þ

Equate powers of kẑzk in (6.5) to see that c2 ¼ kÂAẑzk2=kẑzk2, and therefore we may assume
c > 0 and ÂA ¼ cU for some U 2 Uðn� 1Þ. Similarly, we find that Re b1 ¼ kÂA1k

2=c2 and
b̂b ¼ 2U�ÂA1=c. This gives (6.1).
The converse is easily verified. J
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The closure of H in CP
n contains exactly one point in 1, namely ½1 : 0 : � � � : 0�.

Denote this point by 1H . Our characterization of the automorphisms of H that fix 0
can now be used to find those that fix 1H .

THEOREM 6.2 Let T 2 LðC
n
Þ. Then T 2 AutH such that Tð1HÞ ¼ 1H if and only if

there exist d > 0, a 2 @H, and U 2 Uðn� 1Þ such that TðzÞ ¼ Azþ a, where

A ¼
d2 2dðU�âaÞ�

0 dU

" #
: ð6:6Þ

Proof Let S be the generalized inversion (4.2) and let R 2 AutH be of the type given
in Theorem 6.1. It is simple to verify that S 2 AutH and interchanges 0 and 1H . We
obtain transformations described in the theorem by taking T to correspond to the
operators ~SS�1 ~RR ~SS ¼ ~SS ~RR ~SS with various choices of b, c, and U in the definition of R.
We then write T in the desired form by replacing c with 1=d, b1 with a1=d

2, and b̂b
with 2U�âa=d. g

Theorems 6.1 and 6.2 combine in the following natural way.

THEOREM6.3 Let T 2 LðC
n
Þ. Then T 2 AutH such that Tð0Þ ¼ 0 and Tð1HÞ ¼ 1H if

and only if there exists c > 0 and U 2 Uðn� 1Þ such that TðzÞ ¼ Az, where

A ¼
c2 0T

0 cU

� �
: ð6:7Þ

The points 0 and 1H are the only fixed points of T if and only if c 6¼ 1.

Proof Only the last statement of the theorem needs verification. If c ¼ 1, then �e1 is a
fixed point of T in H for all � 2 C such that Re � � 0. Conversely, if z 2 FixT , then
(6.7) gives that c2z1 ¼ z1. This is possible for z1 =2 f0,1g only if c ¼ 1. g

The following theorem involving the iterates fTkg of T 2 LðC
n
Þ is immediate. (We

define T1 ¼ T and Tk ¼ T � Tk�1 for k ¼ 2, 3, . . . .)

THEOREM 6.4 If T 2 AutH fixes 0 and1H and has no other fixed points in H, then the
iterates of T converge uniformly on compact sets to one of the two fixed points.

Proof Due to Theorem 6.3, we have

TkðzÞ ¼ ðc2kz1, c
kUkẑzÞ

for all k ¼ 1, 2, . . . , where c > 0, c 6¼ 1. If c 2 ð0, 1Þ, then clearly Tk ! 0 uniformly on
compact sets. If c > 1, then

TkðzÞ ¼ ½c2k : ckUkẑz : 1� ¼ 1 :
Ukẑz

ck
:
1

c2k

� �
!1H ,

as wished. g
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We will use Theorem 6.4 to consider fixed points of members of AutB. Recall the
notation in (1.1). For these important transformations, we have fixed point information
beyond that given in Theorem 3.3.

THEOREM 6.5 If T 2 AutB with TðruÞ ¼ 0, (u 2 @B, r 2 ½0, 1Þ), and if z 2 B \ FixT ,
then either z is an isolated fixed point in @B or z is on the cylinder fz 2 B:
Puz ¼ ð1þ �srÞu=r, j�j ¼ 1g.

Proof By the identity in Theorem 2.2.5 of [6], we have

1� kTðzÞk2 ¼
s2r ð1� kzk2Þ

j1� rhz, uij2
, z 2 B:

Therefore, if z 2 FixT and kzk 6¼ 1, then j1� rhz, uij ¼ sr. The result readily
follows. g

The following two theorems are from [4,9], respectively.

THEOREM 6.6 If T 2 AutB and T fixes three distinct points of @B, then T
fixes a point of B.

THEOREM 6.7 If T 2 AutB and T has two fixed points on @B and no fixed points on
B, then the iterates of T converge uniformly on compact sets to one of the fixed points
on @B.

The argument for Theorem 6.7 is now almost identical to the proof for the n ¼ 1 case
given in [8]. Originally, techniques involving slicing and one-variable arguments were
used.

Proof of Theorems 6.6 and 6.7 Let S 2 LðC
n
Þ map B onto H with two points of

@B \ FixT taken to 0 and 1H . Then F ¼ S � T � S�1 is in AutH and has 0 and 1H

as fixed points in H. By Theorem 6.3, if T has a third fixed point on @B, then F
fixes e1, proving Theorem 6.6. If T has no other fixed points in �BB, then Theorem 6.7
follows from Theorem 6.4 since Fk ¼ S � Tk � S�1. g

By mapping B onto H in a way similar to the proof of Theorem 6.7 and using
Theorem 6.3, we see that the subgroup of AutB of automorphisms that fix two distinct
boundary points is isomorphic to Rþ  Uðn� 1Þ, where Rþ is the multiplicitive group
of positive real numbers. Likewise, using Theorem 6.2, we see that the subgroup
of AutB of automorphisms that fix one given boundary point is isomorphic to the
semidirect product HðnÞ � ðRþ  Uðn� 1ÞÞ, where HðnÞ is the Heisenburg group in
C
n (see [6]) and � : Rþ  Uðn� 1Þ ! AutHðnÞ is a natural homomorphism.
We conclude with two examples of these results concerning fixed points of

automorphisms of B. For each, let T ¼ U � ’re1 for some r 2 ½0, 1Þ. (We will define U
separately in each example.) Set � ¼ �sr=ð1� rz1Þ. From Theorem 6.5, a fixed point
z of T lines on the cylinder if and only if j�j ¼ 1. Take note of the identities

z1 ¼
sr þ �

r�
,

r� z1
1� rz1

¼
1þ sr�

r
:
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Example 6.8 Fix an integer 2 � k � n and let U 2 UðnÞ be the permutation operator
defined on the basis vectors by Ue1 ¼ ek, Uej ¼ ej�1 for 2 � j � k, and Uej ¼ ej for
kþ 1 � j � n (with obvious adjustment if k ¼ n). Setting TðzÞ ¼ z gives the following
equation in �:

�kþ1 þ
�k

sr
�

�

sr
� 1 ¼ 0: ð6:8Þ

One solution of (6.8) is � ¼ 1, which leads to the fixed points fz 2 B: zj ¼
ð1þ srÞ=r : j ¼ 1, . . . , kg. This is an affine set of fixed points of dimension n� k outside
of B. By Theorem 6.5, the remaining solutions of (6.8) must lead to isolated fixed points
on @B. From Theorem 6.6, there can be at most two solutions of (6.8) that satisfy
j�j 6¼ 1. In fact, it is easy to check that all solutions of (6.8) lie on the unit circle
when k is odd, and two solutions are not on the circle when k is even.

Example 6.9 Let U 2 UðnÞ be given by Uz ¼ ðz1,� ẑzÞ. This results in the equation

�2 � 1 ¼ 0: ð6:9Þ

Corresponding to the root � ¼ �1 is the ðn� 1Þ-dimensional affine set given by
z1 ¼ ð1� srÞ=r that intersects B. Theorem 3.3 then implies that the fixed point
corresponding to the root � ¼ 1 must be isolated. It is the point ð1þ srÞe1=r.
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