Optics: Learning by Computing, with Examples using MathCad

Karl Dieter Moeller

Language: English

Published: Dec 6, 2002

Description:

This book was written over several years for a one-semester course in optics ® 1 for juniors and seniors in science and engineering; it uses Mathcad scripts to provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, incl- ing geometrical optics and aberration, interference and diffraction, coherence, Maxwell’s equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials. Fourier transforms and FT spectroscopy, image formation, and holography. It contains step-by-step derivations of all basic formulas in geometrical, wave, and Fourier optics. The basic text is supplemented by over 170 Mathcad ?les, each suggesting programstosolveaparticularproblem,andeachlinkedtoatopicinorapplication ofoptics.Thecomputer?lesaredynamic,allowingthereadertoseeinstantlythe effects of changing parameters in the equations. Students are thus encouraged to ask “what if...” questions to assess the physical implications of the formulas. To integrate the ?les into the text, applications connecting the formulas and the corresponding computer ?le are listed and may be assigned for homework. The availability of the numerical Fourier transform makes possible a mathematical introduction to the wave theory of imaging, spatial ?ltering, holography, and Fourier transform spectroscopy. Thebookiswrittenforthestudyofparticularprojectsbutcaneasilybeadapted to a variety of related studies. The threefold arrangements of text, applications, and?lesmakethebooksuitableof“self-learning”byscientistsorengineerswho would like to refresh their knowledge of optics. Some ?les are printed out, and 1 Mathcad is a registered trademark of MathSoft Engineering & Education, Inc.